
Hal Finkel, Nick Frontiere,
Katrin Heitmann, Vitali Morozov,
Adrian Pope
Argonne
National Laboratory
!
Zarija Lukic
Lawrence Berkeley
National Laboratory
!
David Daniel, Patricia Fasel
Los Alamos
National Laboratory

Performance and Portability Lessons
from HACC

Salman Habib
HEP and MCS Divisions
Argonne National Laboratory
!
Computation Institute
Argonne National Laboratory
University of Chicago
!
Kavli Institute for Cosmological Physics
University of Chicago
!

ATPESC
August 10, 2015

Roadrunner
(RIP)

Titan
Mira

Edison

Supercomputing: Hardware Evolution

• Power	
 is	
 the	
 main	
 constraint	

‣ 30X performance gain by 2020
‣ ~10-20MW per large system
‣ power/socket roughly const.

• Only	
 way	
 out:	
 more	
 cores	

‣ Several design choices
‣ None good from scientist’s perspective

• Micro-­‐architecture	
 gains	
 sacrificed	

‣ Accelerate specific tasks
‣ Restrict memory access structure

(SIMD/SIMT)
• Machine	
 balance	
 sacrifice	

‣ Memory/Flops; comm BW/Flops —
all go in the wrong direction

‣ (Low-level) code must be refactored

C
lo

ck
 ra

te
 (M

H
z)

20041984 2012

2004

M
em

or
y(

G
B

)/
Pe

ak
_F

lo
ps

(G
Fo

ps
)

2016

Kogge and Resnick (2013)

• Motivations for large HPC campaigns:

 1) Quantitative predictions for complex, nonlinear systems
 2) Discover/Expose physical mechanisms
 3) System-scale simulations (‘impossible experiments’)
 4) Large-Scale inverse problems and optimization

• Driven by a wide variety of data sources, computational
cosmology must address ALL of the above

• Role of scalability/performance:
 1) Very large simulations necessary, but not just a matter of
 running a few large simulations
 2) High throughput essential (short wall clock times)
 3) Optimal design of simulation campaigns (parameter scans)
 4) Large-scale data-intensive applications

Motivating HPC

Supercomputing Challenges: Sociological View

• Codes	
 and	
 Teams	

‣ Most codes are written and maintained by small teams working near the

limits of their capability (no free cycles)
‣ Community codes, by definition, are associated with large inertia (not

easy to change standards, untangle lower-level pieces of code from
higher-level organization, find the people required that have the
expertise, etc.)

‣ Lack of consistent programming model for “scale-up”
‣ In some fields at least, something like a “crisis” is approaching (or so

people say)
• What	
 to	
 do?	

‣ We will get beyond this (the vector to MPP transition was worse)
‣ Transition needs to be staged (not enough manpower to entirely rewrite

code base)
‣ Prediction: There will be no ready made solutions
‣ Realization — “You have got to do it for yourself”

Performance and Portability I

• Performance (assuming you are solving a new problem, not doing ‘ports’)
• Are you sure you want brute speed? Is performance the true bottleneck? (There is always a

price -- realize all HPC machines are poorly balanced)

• Or do you just want to run a ‘large’ problem with acceptable time to solution? (This is the
general case)

• Step I: Know what you want, if performance is a priority it must be designed in right at the
start, you’ll never get it afterwards (optimizing gains are often minimal to non-existent)

• Step II: If performance is needed, make sure you understand the global science problem(s)
being addressed; you may have to start from scratch! There’s no replacement for domain
knowledge

• Factor of two rule -- given human constraints (and Moore’s law), it is not usually worth it to
go for the last factor of two, but there are exceptions -- HACC is one

• Step III: Obtaining performance is painful, so design for the future -- what can you rely on,
what can disappear, what can change, what can break -- the more parameters you can
control, the better -- HPC systems are not your laptop: Learn from experience

• General Advice (mostly obvious): On-chip/node optimization comes first, minimize number of
performance ‘hot spots’ to the extent possible, ditto with data motion (aim to be compute-
bound, avoid look-ups), avoid forest/tree syndromes, think about sacrificing memory for
speed wherever possible, vectorize everything, FMAs are your friends, talk to performance
gurus, do not resort to assembly unless desperate, etc. etc.

Performance and Portability II

• Portability (assuming you are developing new code)
• Three scales of code development: individual (‘idiosyncratic’), small team (‘hot shots’), big

team to open source (‘industrial’)

• Compute environment: small-scale (‘individual PI’, low diversity hardware), medium-scale
(‘single project’, somewhat diverse hardware), large-scale (‘multiple projects’, very diverse
hardware) -- note scale here does not refer to problem size!

• Step I: Consider which categories your situation falls into, this will help set the portability
constraints

• Concrete advice is difficult; situations vary, look around you and see what other people are
doing -- learn from them (adopt/reuse what works, dump what does not, be ruthless)

• Simplicity is good (learn from Google!), avoid nonfunctional ‘adornments’

• Design for the future -- software life cycles should be long, but often are not
• Step II: Most science projects start with a compact ‘software core’ that grows in multiple

directions, pay attention to planning the structure of the core and the extension paths -- things
will often not work as expected so make sure the structure is sufficiently flexible -- starting
from scratch should be largely a reconfiguration of key software elements; identify these
elements and design around them

• Performance and portability are often in opposition, but they can be co-aligned -- as in HACC

Co-Design vs. Code Design
BQC:
- 16 cores
- 205 GFlops, 16 GB
- 32 MB L2, crossbar at
400 GB/s (memory
connection is 40 GB/s)
- 5-D torus at 40 GB/s
Xeon Phi (Knights Corner):
- 60 cores
- 1 TFlops, 8 GB
- 32 MB L2, ring at 300 GB/s
(connects to cores and
memory)
- 8 GB/s to host CPU

Average performance speed-up on ~10 applications codes on Titan is
~2 (ranging from 1-8), but of Titan’s 27 PFlops, only 2.5 PFlops are in
the CPU! What is wrong with this picture? (BTW, it’s not Titan’s fault!)

16GB

16GB

Roadrunner: The Original Driver for HACC

!
• HPC Myths

• The magic compiler
• The magic

programming model/
language (DSL)

• Special-purpose
hardware

• Co-Design?
• Dealing with (Current)

HPC Reality
• Follow the architecture
• Know the boundary

conditions
• There is no such thing

as a ‘code port’
• Think out of the box
• Get the best team
• Work together

• Instrumentation Advances
• Cosmic Acceleration
• Nature of Dark Matter
• Primordial Fluctuations
• Neutrinos
• Cosmic Structure Formation

ROSAT (X-ray) WMAP (microwave)

Fermi (gamma ray) SDSS (optical)

Why HACC?: ‘Precision’ Cosmology I

Boyle, Smith

Perlmutter,
Riess, Schmidt

Mather, Smoot

Optical survey ‘Moore’s Law’

The Source of Knowledge: Sky Surveys

The Cosmic
Puzzle: Who
ordered the
rest of it?

Why HACC: Precision Cosmology II

Planck (2013)

Concurrent
Supercomputing
Progress

Four orders of
magnitude!

Equivalent to
one modern GPU

Compilation for SH by
E. Gawiser (1999)

sCDM

CMB LSS

4 orders of
magnitude!

BOSS (2013)

Compilation (1999)

06

Why Another “Code”?
‣ HPC systems: “faster = more”

• More nodes
- Separate memory spaces
- Relatively slow network communication

• More complicated nodes
- Architectures

- Accelerators, multi-core, many-core
- Memory hierarchies

- CPU main memory
- Accelerator main memory
- High-bandwidth memory
- Non-volatile memory

‣ Portable performance
• Massively parallel/concurrent
• Adapt to new architectures

- Organize and deliver data to the right
place in the memory hierarchy at the
right time

- Optimize floating point execution
• Not possible with off-the-shelf codes

Roadrunner Architecture (2008)

HACC Ideas and Features

Next up for HACC:

Summit

Cori

Aurora

What is HACC?
HACC (Hardware/Hybrid Accelerated
Cosmology Code) Framework

• HACC does very large high-resolution
cosmological simulations
• Design Imperative: Must run at high performance on

all supercomputer architectures at full scale

• First production science code to break 10PFlops
(sustained)

• Combines a number of algorithms using a ‘mix and
match’ approach based on a 2-level structure

• Perfect weak scaling

• Strong scales to better than 100 MB/core

• World’s largest high-resolution cosmology
simulations on Mira and Titan

• CORAL benchmark code: Chosen for early science
projects on Cori, Summit, and Theta

!

Supercomputer SDSS TelescopeMock Galaxies SDSS
Galaxies

Dark 	

matter

Theory

Role of Computation in Cosmology

• Three Roles of Cosmological Simulations
• Basic theory of cosmological probes

• Production of high-fidelity ‘mock skys’ for end-to-end tests of the
observation/analysis chain

• Essential component of analysis toolkits

• Extreme Simulation and Analysis Challenges
• Large dynamic range simulations; control of subgrid modeling

and feedback mechanisms

• Design and implementation of complex analyses on large
datasets; new fast (approximate) algorithms

• Solution of large statistical inverse problems of scientific
inference (many parameters, ~10-100) at the ~1% level

!

Analysis Software

Cosmological Simulation

Observables

Experiment-
specific output

(e.g., sky catalog)

Atmosphere

Telescope

Detector

Pipelines

Pr
oj

ec
t

Th
eo

ry
Sc

ie
nc

e

Simulating the Universe
• Key Role of Gravity

• Gravity dominates at large scales:
the Vlasov-Poisson equation (VPE)

• VPE is 6-D; cannot be solved as a
PDE

• N-Body Methods
• No shielding in gravity (essentially

long range interactions)

• Technique is naturally Lagrangian

• Are errors controllable?
• More Physics

• Smaller scale ‘gastrophysics’
effects added via hydro solvers,
subgrid modeling, or post-
processing (major topic)

• Phenomenology
• Calibrate simulations against

observations

Structure formation via gravitational Jeans instability

Cosmological Vlasov-Poisson Equation: A ‘wrong-sign’
electrostatic plasma with time-dependent particle ‘charge’,

Newtonian limit of the Vlasov-Einstein equations

HACC’s Domain: The “Bleeding Edge”

• Force and Mass Resolution:
• Galaxy halos ~100kpc, hence force

resolution has to be ~kpc; with Gpc box-
sizes, a dynamic range of a million to
one — ~trillion particle simulations

• Ratio of largest object mass to lightest is
~100,000:1

• Physics:
• Gravity dominates at scales greater than

~0.1 Mpc

• Small scales: galaxy modeling, semi-
analytic methods to incorporate gas
physics/feedback/star formation

• Computing ‘Boundary Conditions’:
• Total memory in the PB+ class

• Performance in the 10 PFlops+ class

• Wall-clock of ~days/week, in situ
analysis

Key motivation for HACC (Hardware/
Hybrid Accelerated Cosmology Code):
Can the Universe be run as a short
computational ‘experiment’?

1000 Mpc

100 Mpc

20 Mpc

2 Mpc

Ti
m

e

Gravitational Jeans Instability: ‘Outer Rim’
run with 1.1 trillion particles

• Optimize Next-Generation Code ‘Ecology’: Numerical methods,

algorithms, mixed precision, data locality, scalability, I/O, in situ
analysis -- life-cycle significantly longer than architecture timescales

• Framework design: Support a ‘universal’ top layer + ‘plug-in’
optimized node-level components; minimize data structure
complexity and data motion -- support multiple programming models

• Performance: Optimization stresses scalability, low memory
overhead, and platform flexibility; assume ‘on your own’ for software
support, but hook into tools as available (e.g., ESSL FFT)

• Optimal Splitting of Gravitational Forces: Spectral Particle-Mesh
melded with direct and RCB tree force solvers, short hand-over
scale (dynamic range splitting ~ 10,000 X 100)

• Compute to Communication balance: Particle Overloading

• Time-Stepping: Symplectic, sub-cycled, locally adaptive

• Force Kernel: Highly optimized force kernel takes up large fraction
of compute time, no look-ups due to short hand-over scale

• Production Readiness: runs on all supercomputer architectures;
exascale ready!

Opening the HACC ‘Black Box’: Design Principles

HACC force hierarchy
(PPTreePM)

Roadrunner
RIP

Titan

Hopper

Mira

Dissecting the N-Body Problem

• Physics Idea:
• Smooth long-range component — slowly varying “mass field”

• Fluctuating short-range component — faster time-scale, discrete force
contributions

• Implementation:
• Smooth field produced from depositing N-body particles on a (large) grid —

O(10,000) cube (4 orders of magnitude dynamic range); solve Poisson equation
on these scales using a ‘quiet’ spectral method (matching and force-solving
undertaken as a single task)

• Small scales: match the small-scale force to the long-range force using spectral
filtering at the smallest practical scales — O(100) dynamic range

• Compute small-scale forces with the algorithm that makes the most sense for a
given architecture (use mixed precision)

• Scale Isolation:
• Small-scale forces are made (essentially) ultra-local using particle overloading

• Sub-cycled time-stepping using a split-operator symplectic solver separates the
force scales in time

‘HACC In Pictures’

Mira/Sequoia

Newtonian
Force

Noisy CIC PM Force

6th-Order sinc-Gaussian
spectrally filtered PM

Force
Tw

o-
pa

rt
ic

le
 F

or
ce

HACC Top Layer:
3-D domain decomposition
with particle replication at
boundaries (‘overloading’)
for Spectral PM algorithm

(long-range force)

HACC ‘Nodal’ Layer:
Short-range solvers

employing combination
of flexible chaining mesh
and RCB tree-based force

evaluations

RCB tree
levels

~50 Mpc ~1 Mpc

Host-side GPU: two options,
P3M vs. TreePM

Particle Overloading and Short-Range Solvers

• Particle Overloading: Particle replication instead of
conventional guard zones with 3-D domain decomposition
-- minimizes inter-processor communication and allows for
swappable short-range solvers (IMPORTANT)

• Short-range Force: Depending on node architecture
switch between P3M and PPTreePM algorithms (pseudo-
particle method goes beyond monopole order), by tuning
number of particles in leaf nodes and error control criteria,
optimize for computational efficiency

• Error tests: Can directly compare different short-range
solver algorithms

Overload Zone (particle ‘cache’)

RCB Tree Hierarchy

Gafton and
Rosswog 2011

+/- 0.1%

HACC Force Algorithm Test: PPTreePM vs. P3M

P(k) Ratio

 0.01

 0.1

 1

 10

 100

 64 256 1024 4096 16384 65536

Ti
m

e
[n

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Number of Ranks

Weak Scaling of Poisson Solver

Roadrunner
BG/P
BG/Q

Ideal Scaling

Splitting the Force: The Long-Range Solver

• Spectral Particle-Mesh Solver: Custom
(large) FFT-based method -- uses (i) 6-th
order Green function, (ii) 4th order spectral
Super-Lanczos gradients, (iii) high-order
spectral filtering to reduce grid anisotropy
noise

• Short-range Force: Asymptotically correct
semi-analytic expression for the difference
between the Newtonian and the long-range
force; uses a 5th order polynomial

• Pencil-decomposed Parallel 3-D FFT:
Fast 3D-to-2D combinatorics, FFT
performance theoretically viable to
exascale systems; HACC scalability
depends entirely on FFT performance

• Time-stepping uses Symplectic Sub-
cycling: Time-stepping via 2nd-order
accurate symplectic maps with ‘KSK’ for
the global timestep, where ‘S’ is split into
multiple ‘SKS’ local force steps

1/r

Noisy CIC PM force

6th-Order sinc-Gaussian
spectrally filtered PM

force

2

Distance (grid units)

Number of Ranks

Weak Scaling of
Poisson Solver

Ti
m

e
[n

se
c]

 p
er

 s
te

p
pe

r p
ar

tic
le

Tw
o-

pa
rt

ic
le

 F
or

ce

G6(k) =

45

128

�

2

"
X

i

cos

✓
2⇡ki�

L

◆
� 5

64

X

i

cos

✓
4⇡ki�

L

◆
+

1

1024

X

i

cos

✓
8⇡ki�

L

◆
� 2835

1024

#�1

S(k) = exp

✓
�1

4

k2�2

◆ ✓
2k

�

◆
sin

✓
k�

2

◆�ns

�f

�x

����
4

=

4

3

NX

j=�N+1

iC

j

e

(2⇡jx/L) 2⇡j�

L

sin(2⇡j�/L)

2⇡j�/L

�1

6

NX

j=�N+1

iC

j

e

(2⇡jx/L) 2⇡j�

L

sin(4⇡j�/L)

2⇡j�/L

where the C

j

are the coe�cients in the Fourier expansion of f

fgrid(r) =

1

r2
tanh(br)� b

r

1

cosh

2
(br)

+cr
�
1 + dr2

�
exp

�
�dr2

�
+e

�
1 + fr2

+ gr4
+ lr6

�
exp

�
�hr2

�

HACC on the BG/Q

 0.1

 1

 10

4K 16K 64K 256K 1024K

 0.015625
 0.03125
 0.0625
 0.125
 0.25
 0.5
 1
 2
 4
 8
 16

Ti
m

e
[n

se
c]

 p
er

 S
ub

st
ep

 p
er

 P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 P
Fl

op
/s

Number of Cores

Ideal ScalingTi
m

e
(n

se
c)

 p
er

 s
ub

st
ep

/p
ar

tic
le

Pe
rf

or
m

an
ce

 (P
Fl

op
s)

Number of Cores
HACC weak scaling on the
IBM BG/Q (MPI/OpenMP)

13.94 PFlops, 69.2% peak, 90% parallel efficiency on
1,572,864 cores/MPI ranks, 6.3M-way concurrency

3.6 trillion particle
benchmark*

Habib et al. 2012

HACC: Hybrid/
Hardware

Accelerated
Cosmology Code

Framework

 HACC BG/Q Version
• Algorithms: FFT-based

SPM; PP+RCB Tree
• Data Locality: Rank level

via ‘overloading’, at tree-
level use the RCB
grouping to organize
particle memory buffers

• Build/Walk Minimization:
Reduce tree depth using
rank-local trees, shortest
hand-over scale, bigger
p-p component

• Force Kernel: Use
polynomial representation
(no look-ups); vectorize
kernel evaluation; hide
instruction latency

! *largest ever run

Accelerated Systems: Specific Issues

Mira/Sequoia

 Imbalances and Bottlenecks
• Memory is primarily host-side (32

GB vs. 6 GB) (against
Roadrunner’s 16 GB vs. 16 GB),
important thing to think about (in
case of HACC, the grid/particle
balance)

• PCIe is a key bottleneck; overall
interconnect B/W does not match
Flops (not even close)

• There’s no point in ‘sharing’ work
between the CPU and the GPU,
performance gains will be minimal
-- GPU must dominate

• The only reason to write a code for
such a system is if you can truly
exploit its power (2 X CPU is a
waste of effort!)

 Strategies for Success
• It’s (still) all about understanding and

controlling data motion
• Rethink your code and even

approach to the problem
• Isolate hotspots, and design for

portability around them (modular
programming)

• Like it or not, pragmas will never be
the full answer

!

HACC on Titan: GPU Implementation (Schematic)

Block
3	
 Grid	
 units

Push	
 to	
 GPU

Chaining
Mesh

 P3M Implementation (OpenCL):
• Spatial data pushed to GPU in large

blocks, data is sub-partitioned into
chaining mesh cubes

• Compute forces between particles in
a cube and neighboring cubes

• Natural parallelism and simplicity
leads to high performance

• Typical push size ~2GB; large push
size ensures computation time
exceeds memory transfer latency by
a large factor

• More MPI tasks/node preferred over
threaded single MPI tasks (better
host code performance)

 New Implementations (OpenCL and
CUDA):

• P3M with data pushed only once per
long time-step, completely
eliminating memory transfer
latencies (orders of magnitude less);
uses ‘soft boundary’ chaining mesh,
rather than rebuilding every sub-
cycle

• TreePM analog of BG/Q code written
in CUDA, also produces high
performance

HACC on Titan: GPU Implementation Performance

• P3M kernel runs at

1.6TFlops/node at
40.3% of peak (73%
of algorithmic peak)

• TreePM kernel was
run on 77% of Titan
at 20.54 PFlops at
almost identical
performance on the
card

• Because of less
overhead, P3M code
is (currently) faster by
factor of two in time
to solution

!

Ideal Scaling

Initial Strong Scaling
Initial Weak Scaling

Improved Weak Scaling

 TreePM Weak Scaling

Ti
m

e
(n

se
c)

 p
er

 s
ub

st
ep

/p
ar

tic
le

Number of Nodes

99.2% Parallel Efficiency

Q Continuum: Extradimensional plane of existence Visualization: Silvio Rizzi, Joe Insley et. al., Argonne

The high resolution Q Continuum Simulation, finished July 13 on ~90% of Titan under INCITE, evolving more than
half a trillion particles. Shown is the output from one node (~33 million particles), 1/16384 of the full simulation
30

Summary
!

• Thoughtful design of flexible code infrastructure; minimize number of
computational ‘hot spots’, explore multiple algorithmic ideas — exploit domain
science expertise

• Because machines are so out of balance, focusing only on the lowest-level
compute-intensive kernels can be a mistake (‘code ports’)

• One possible solution is an overarching universal layer with architecture-
dependent, plug-in modules (with implications for productivity)

• Understand data motion issues in depth — minimize data motion, always look
to hide communication latency with computation

• Be able to change on fast timescales (HACC needs no external libraries in the
main simulation code — helps to get on new machines early)

• As science outputs become more complex, data analysis becomes a very
significant fraction of available computational time — optimize performance
with this in mind

• Main HACC paper — http://arxiv.org/abs/1410.2805;
• Also — http://authors.elsevier.com/a/1RSrG_VU94HRMb (until Sep 20)

http://arxiv.org/abs/1410.2805
http://authors.elsevier.com/a/1RSrG_VU94HRMb

